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Permutation Statistics

A descent of a permutation σ on the set [n] := {1, 2, . . . , n} is an index
i ∈ [n − 1] such that σ(i) > σ(i + 1). An inversion is a pair of integers
(i , j) with 1 ≤ i < j ≤ n such that σ(i) > σ(j).

σ = 23154

Des(σ) = {2, 4}, Inv(σ) = {(1, 3), (2, 3), (4, 5)}

The generating functions

An(t) =
∑
σ∈Sn

tdes(σ) Mn(t) =
∑
σ∈Sn

t inv(σ)

are called Eulerian polynomials and Mahonian polynomials, respectively.
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A Common Generalization

A permutation of an n-vertex digraph D = (V ,E ) is a bijection
σ : V → [n]. A descent of such a permutation is an arc u → v such that
σ(u) > σ(v).
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A Common Generalization

Claim (Foata-Zeilberger)

If D =
−→
P n, then D-descents are exactly descents. Similarly D =

−→
K n

corresponds to inversions.

2 3 1 5 4

(a) des(23154) = 2

2 3 1 5 4

(b) inv(23154) = 3

For a digraph D = (V ,E ), we define

AD(t) =
∑
σ∈SD

tdesD(σ). (1)

In particular, A−→
Pn

(t) = An(t) and A−→
Kn

(t) = Mn(t).
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Main Results

Question

What (if anything) can be said about AD(−1)?

|An(−1)| = |A−→
P n

(−1)| is the number of alternating permutations, i.e.
those that go

σ(1) < σ(2) > σ(3) < · · · > σ(n)

|Mn(−1)| = |A−→
K n

(−1)| also counts something interesting.



Main Results

Question

What (if anything) can be said about AD(−1)?

|An(−1)| = |A−→
P n

(−1)| is the number of alternating permutations, i.e.
those that go

σ(1) < σ(2) > σ(3) < · · · > σ(n)

|Mn(−1)| = |A−→
K n

(−1)| also counts something interesting.



Main Results

Question

What (if anything) can be said about AD(−1)?

|An(−1)| = |A−→
P n

(−1)| is the number of alternating permutations, i.e.
those that go

σ(1) < σ(2) > σ(3) < · · · > σ(n)

|Mn(−1)| = |A−→
K n

(−1)| also counts something interesting.



Main Results

Question

What (if anything) can be said about AD(−1)?

|An(−1)| = |A−→
P n

(−1)| is the number of alternating permutations, i.e.
those that go

σ(1) < σ(2) > σ(3) < · · · > σ(n)

|Mn(−1)| = |A−→
K n

(−1)| also counts something interesting.



Main Results

Claim

The value of |AD(−1)| depends only on the underlying graph of G.

With this in mind, for any graph G we can define

ν(G ) = |AD(−1)|

for any orientation D of G .

Question (Kalai 2002)

What can be said about ν(G )?

For example, ν(Pn) = |A−→
P n

(−1)| is the number of alternating
permutations.
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Main Results

Definition

Given an n-vertex graph G , we say that an ordering π = (π1, . . . , πn) of
the vertex set V (G ) is an even sequence if each of the subgraphs
G [π1, . . . , πi ] induced by the first i vertices of π have an even number of
edges for all 1 ≤ i ≤ n.

1 2 3 4 5

We claim that π = (3, 1, 2, 5, 4) is an even sequence:
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Main Results
Let η(G ) denote the number of even sequences of G .

Claim

A permutation π is an even sequence for Pn if and only if π−1 is an
alternating permutation. In particular, ν(Pn) = η(Pn).

Theorem (Celano, Sieger, S. 2023)

We have ν(G ) = η(G ) whenever G is bipartite, complete multipartite, or a
blowup of a cycle.
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Main Results

Question

Does every graph satisfy ν(G ) = η(G )?
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No!
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Main Results

Theorem (Celano, Sieger, S. 2023)

We have ν(G ) = η(G ) whenever G is bipartite, complete multipartite, or a
blowup of a cycle.

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that ν(G ′) = η(G ′) for all induced
subgraphs G ′ ⊆ G, then G is either bipartite, complete multipartite, or a
blowup of a cycle.
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Main Results

Question

What is the maximum/minimum values for ν(G ) (or η(G )) amongst
graphs G with some property?

Theorem (Celano, Sieger, S. 2023)

If T is a tree on 2n + 1 vertices, then

n!2n ≤ ν(T ) = η(T ) ≤ (2n)!

Moreover, equality holds in the lower bound if and only if T is a hairbrush,
and equality holds in the upper bound if and only if T is a star.
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Main Results

Observe that ν(G ) = 0 if and only if −1 is a root of AD(t).

Question

What can be said about the multiplicity of −1 as a root of AD(t) in
general?
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If D is a tournament on n vertices, then mult(AD(t),−1) = bn2c.

Question

Is bn2c the largest mult(AD(t),−1) can be?

Note that tournaments have the largest (potential) degree for AD(t).
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Main Results

Question

Is bn2c the largest mult(AD(t),−1) can be?

Theorem (Celano, Sieger, S. 2023)

If D is an n-vertex digraph, then

mult(AD(t),−1) ≤ n − s2(n),

where s2(n) denotes the number of 1’s in the binary expansion of n.
Moreover, for all n, there exist n-vertex digraphs D with

AD(t) =
n!

2n−s2(n)
(1 + t)n−s2(n).

The only extremal examples we know are “impartial digraphs”, which is
weird.
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Proof Ideas

Recall that we want to show ν(G ) = η(G ) for e.g. bipartite graphs.

Claim

If G has an odd number of edges, then ν(G ) = η(G ) = 0.

Claim

If G has an even number of edges, then

η(G ) =
∑
v

η(G − v).
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Proof Ideas

Corollary

If every bipartite graph with an even number of edges satisfies
ν(G ) =

∑
ν(G − v), then ν(G ) = η(G ) for every bipartite graph.

Lemma

For any digraph,

AD(t) =
∑
v∈V

tdeg
+
D(v) + tdeg

−
D (v)

2
AD−v (t)
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Proof Ideas

Claim

There exists a “natural” orientation D for each bipartite graph G which
makes it easy to predict the sign of AD(t).

u1 u2 u3

v1 v2 v3

Lemma

For such a digraph we have AD(−1) ≥ 0. In particular, when e(G ) is even
we have

ν(G ) = AD(−1) =
∑

v∈V (D)

AD−v (−1) =
∑

ν(G − v).
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Proof Ideas

Claim

There exists “natural” orientations for complete multipartite
graphs/blowup of a cycles which makes it easy to predict the sign of
AD(t).
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We have ν(G ) = η(G ) whenever G is bipartite, complete multipartite, or a
blowup of a cycle.
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Proof Ideas

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that ν(G ′) = η(G ′) for all induced
subgraphs G ′ ⊆ G, then G is either bipartite, complete multipartite, or a
blowup of a cycle.

Proposition (Celano, Sieger, S. 2023)

If G is a connected graph, then G is induced odd pan-free if and only if it
is either bipartite, complete multipartite, or a blowup of a cycle.
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Open Problems

Question

Can one give a combinatorial interpretation for ν(G ) for arbitrary graphs
G?

Note that ν(G ) ≤ η(G ) in general, so perhaps this is some special subset
of even sequences.

Conjecture

If G is an Eulerian graph, then ν(G ) =
∑

v ν(G − v).
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Open Problems

We gave a non-combinatorial proof that ν(G ) = η(G ) for all bipartite
graphs G .

Problem

For any bipartite graph G = ([n],E ) and orientation D of G , construct an
explicit involution φ : Sn → Sn such that

(a) The set of fixed points Fφ of φ is the set of (inverses of) even
sequences of G , and

(b) (−1)desD(σ) = −(−1)desD(φ(σ)) for all σ /∈ Fφ.
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Open Problems

Conjecture

If D is the orientation of a complete multipartite graph which has r parts
of odd size, then mult(AD(t),−1) =

⌊
r
2

⌋
.

It is easy to show that mult(AD(t), 0) corresponds to the minimum
number of arcs one must reverse in order for D to be acyclic.

Question

Does there exist a digraph D such that AD(t) has an integral root which is
not equal to either 0 or −1?

No such digraph exists on at most 5 vertices, and there exist digraphs with
real roots of magnitude larger than 2.
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