Eulerian Polynomials of Digraphs

Sam Spiro, Rutgers University

Joint with Kyle Celano and Nicholas Sieger




Permutation Statistics



Permutation Statistics

A descent of a permutation o on the set [n] := {1,2,...,n} is an index
i € [n— 1] such that o(i) > o(i 4+ 1). An inversion is a pair of integers
(i,j) with 1 <i < j < nsuch that o(i) > o(j).
o = 23154
Des(o) = {2,4}, Inv(o) = {(1,3),(2,3),(4,5)}



Permutation Statistics

A descent of a permutation o on the set [n] := {1,2,...,n} is an index
i € [n— 1] such that o(i) > o(i 4+ 1). An inversion is a pair of integers
(i,j) with 1 <i < j < nsuch that o(i) > o(j).
o = 23154
Des(o) = {2,4}, Inv(o) = {(1,3),(2,3),(4,5)}

The generating functions

ceG, ceS,

are called Eulerian polynomials and Mahonian polynomials, respectively.
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A permutation of an n-vertex digraph D = (V, E) is a bijection
oV — [n]. A descent of such a permutation is an arc u — v such that
o(u) > o(v).
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Claim (Foata-Zeilberger)

If D= ?,,, then D-descents are exactly descents. Similarly D = i_(),,

corresponds to inversions.
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(a) des(23154) =2 (b) inv(23154) =3

For a digraph D = (V/, E), we define

Ap(t) = ) tdenlo), (1)

ceGp

In particular, AF:(t) = Ap(t) and Az(t) = Mp(t).
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Main Results

What (if anything) can be said about Ap(—1)?

|An(—1)| = |Az (—1)| is the number of alternating permutations, i.e.
those that go

o(l) <o(2)>0(3)<--->0a(n)

IM,(—1)| = |A7<>n(—1)] also counts something interesting.

and the later being the number of correct proofs of the Riemann hypothesis'.

L As of the time of writing.
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Main Results

Claim
The value of |Ap(—1)| depends only on the underlying graph of G. }

With this in mind, for any graph G we can define

v(G) = [Ap(-1)|
for any orientation D of G.

Question (Kalai 2002)
What can be said about v(G)?

For example, v(P,) = |A3 (—1)| is the number of alternating
permutations.
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Theorem (Celano, Sieger, S. 2023)

We have v(G) = n(G) whenever G is bipartite, complete multipartite, or a
blowup of a cycle.

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that v(G') = n(G") for all induced
subgraphs G' C G, then G is either bipartite, complete multipartite, or a
blowup of a cycle.
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Question

What is the maximum /minimum values for v(G) (or n(G)) amongst
graphs G with some property?

Theorem (Celano, Sieger, S. 2023)

If T is a tree on 2n + 1 vertices, then
n2" < y(T)=n(T) < (2n)!

Moreover, equality holds in the lower bound if and only if T is a hairbrush,
and equality holds in the upper bound if and only if T is a star.
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Is | 5] the largest mult(Ap(t), —1) can be?

Theorem (Celano, Sieger, S. 2023)
If D is an n-vertex digraph, then

mult(Ap(t), —1) < n— sp(n),

where sp(n) denotes the number of 1's in the binary expansion of n.
Moreover, for all n, there exist n-vertex digraphs D with

n n—sy(n
AD(t) = 2n—52(n) (1 + t) 2( )

The only extremal examples we know are “impartial digraphs”, which is
weird.
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Claim
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Claim
If G has an even number of edges, then

n(G) =) n(G—v).




Proof ldeas

Corollary

If every bipartite graph with an even number of edges satisfies
v(G) = > v(G —v), then v(G) = n(G) for every bipartite graph.




Proof ldeas

Corollary

If every bipartite graph with an even number of edges satisfies
v(G) = > v(G —v), then v(G) = n(G) for every bipartite graph.

Lemma
For any digraph,

tdegE(v) + tdegE (v)

AD(t) = 5 AD_V(t)
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Claim

There exists a “natural” orientation D for each bipartite graph G which
makes it easy to predict the sign of Ap(t).

Lemma

For such a digraph we have Ap(—1) > 0. In particular, when e(G) is even
we have
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Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that v(G’) = n(G") for all induced

subgraphs G' C G, then G is either bipartite, complete multipartite, or a
blowup of a cycle.

Proposition (Celano, Sieger, S. 2023)

If G is a connected graph, then G is induced odd pan-free if and only if it
is either bipartite, complete multipartite, or a blowup of a cycle.
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Open Problems

We gave a non-combinatorial proof that v(G) = n(G) for all bipartite
graphs G.

Problem

For any bipartite graph G = ([n], E) and orientation D of G, construct an
explicit involution ¢ : &, — &, such that

(a) The set of fixed points Fy of ¢ is the set of (inverses of) even
sequences of G, and

(b) (—1)des0(®) = —(—1)deso(#(9)) for all o ¢ Fy.
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Open Problems

If D is the orientation of a complete multipartite graph which has r parts
of odd size, then mult(Ap(t),—1) = | 5].

It is easy to show that mult(Ap(t),0) corresponds to the minimum
number of arcs one must reverse in order for D to be acyclic.

Does there exist a digraph D such that Ap(t) has an integral root which is
not equal to either 0 or —17

No such digraph exists on at most 5 vertices, and there exist digraphs with
real roots of magnitude larger than 2.
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