Eulerian Polynomials of Digraphs

Sam Spiro, Rutgers University

Joint with Kyle Celano and Nicholas Sieger

KORK EXTERNE PROVIDE

[Permutation Statistics](#page-1-0)

KOKK@KKEKKEK E 1990

[Permutation Statistics](#page-1-0)

A descent of a permutation σ on the set $[n] := \{1, 2, \ldots, n\}$ is an index $i \in [n-1]$ such that $\sigma(i) > \sigma(i+1)$. An *inversion* is a pair of integers (i, j) with $1 \le i < j \le n$ such that $\sigma(i) > \sigma(j)$.

 $\sigma = 23154$

 $Des(\sigma) = \{2, 4\}, \text{Inv}(\sigma) = \{(1, 3), (2, 3), (4, 5)\}\$

KORKAR KERKER SAGA

[Permutation Statistics](#page-1-0)

A descent of a permutation σ on the set $[n] := \{1, 2, \ldots, n\}$ is an index $i \in [n-1]$ such that $\sigma(i) > \sigma(i+1)$. An *inversion* is a pair of integers (i, j) with $1 \le i < j \le n$ such that $\sigma(i) > \sigma(j)$.

> $\sigma = 23154$ $Des(\sigma) = \{2, 4\}, \text{Inv}(\sigma) = \{(1, 3), (2, 3), (4, 5)\}\$

The generating functions

$$
A_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\mathrm{des}(\sigma)} \quad M_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\mathrm{inv}(\sigma)}
$$

are called Eulerian polynomials and Mahonian polynomials, respectively.

KORKARYKERKER POLO

KOKK@KKEKKEK E 1990

A permutation of an *n*-vertex digraph $D = (V, E)$ is a bijection $\sigma : V \to [n]$. A descent of such a permutation is an arc $u \to v$ such that $\sigma(u) > \sigma(v)$.

KORKARYKERKER POLO

Claim (Foata-Zeilberger)

If $D=\overrightarrow{P}_{n}$, then D-descents are exactly descents. Similarly $D=\overrightarrow{K}_{n}$ corresponds to inversions.

KORKARYKERKER POLO

Claim (Foata-Zeilberger)

If $D=\overrightarrow{P}_{n}$, then D-descents are exactly descents. Similarly $D=\overrightarrow{K}_{n}$ corresponds to inversions.

For a digraph $D = (V, E)$, we define

$$
A_D(t) = \sum_{\sigma \in \mathfrak{S}_D} t^{\deg_D(\sigma)}.
$$
 (1)

In particular, $A_{\overrightarrow{P_n}}(t) = A_n(t)$ and $A_{\overrightarrow{K_n}}(t) = M_n(t)$.

Question

What (if anything) can be said about $A_D(-1)$?

KO K K Ø K K E K K E K V K K K K K K K K K

Question

What (if anything) can be said about $A_D(-1)$?

 $|A_n(-1)|=|A_{\overrightarrow{P}_n}(-1)|$ is the number of *alternating permutations*, i.e. those that go

 $\sigma(1) < \sigma(2) > \sigma(3) < \cdots > \sigma(n)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Question

What (if anything) can be said about $A_D(-1)$?

 $|A_n(-1)|=|A_{\overrightarrow{P}_n}(-1)|$ is the number of *alternating permutations*, i.e. those that go

$$
\sigma(1) < \sigma(2) > \sigma(3) < \cdots > \sigma(n)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 $|M_n(-1)|=|A_{\overrightarrow{K}_n}(-1)|$ also counts something interesting.

Question

What (if anything) can be said about $A_D(-1)$?

 $|A_n(-1)|=|A_{\overrightarrow{P}_n}(-1)|$ is the number of *alternating permutations*, i.e. those that go

$$
\sigma(1) < \sigma(2) > \sigma(3) < \cdots > \sigma(n)
$$

 $|M_n(-1)|=|A_{\overrightarrow{K}_n}(-1)|$ also counts something interesting.

and the later being the number of *correct proofs of the Riemann hypothesis*¹.

KELK KØLK VELKEN EL 1990

¹As of the time of writing.

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

KO K K Ø K K E K K E K V K K K K K K K K K

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

With this in mind, for any graph G we can define

$$
\nu(G)=|A_D(-1)|
$$

for any orientation D of G .

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

With this in mind, for any graph G we can define

$$
\nu(G)=|A_D(-1)|
$$

for any orientation D of G .

Question (Kalai 2002)

What can be said about $\nu(G)$?

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

With this in mind, for any graph G we can define

$$
\nu(G)=|A_D(-1)|
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

for any orientation D of G .

Question (Kalai 2002)

What can be said about $\nu(G)$?

For example, $\nu(P_n) = |A_{\overrightarrow{P}_n}(-1)|$ is the number of alternating permutations.

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \dots, \pi_n)$ of the vertex set $V(G)$ is an even sequence if each of the subgraphs $G[\pi_1,\ldots,\pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5)
$$

KORKAR KERKER ST VOOR

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set $V(G)$ is an even sequence if each of the subgraphs $G[\pi_1,\ldots,\pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5)
$$

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

$$
\circ \qquad \circ \qquad \textcircled{3} \qquad \circ
$$

 \circ

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set $V(G)$ is an even sequence if each of the subgraphs $G[\pi_1,\ldots,\pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5)
$$

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

$$
\begin{matrix}\n 1\n \end{matrix}\n \quad\n \circ \quad\n \begin{matrix}\n 3\n \end{matrix}\n \quad\n \circ \quad
$$

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set $V(G)$ is an even sequence if each of the subgraphs $G[\pi_1,\ldots,\pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5)
$$

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

$$
\begin{array}{ccc}\n\textcircled{1} & -\textcircled{2} & -\textcircled{3} & \circ \\
\end{array}
$$

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set $V(G)$ is an even sequence if each of the subgraphs $G[\pi_1,\ldots,\pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5)
$$

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

$$
(1) \quad (2) \quad (3) \quad (5)
$$

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set $V(G)$ is an even sequence if each of the subgraphs $G[\pi_1,\ldots,\pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5)
$$

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

Let $\eta(G)$ denote the number of even sequences of G.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Let $\eta(G)$ denote the number of even sequences of G.

Claim

A permutation π is an even sequence for P_n if and only if π^{-1} is an alternating permutation. In particular, $\nu(P_n) = \eta(P_n)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let $\eta(G)$ denote the number of even sequences of G.

Claim

A permutation π is an even sequence for P_n if and only if π^{-1} is an alternating permutation. In particular, $\nu(P_n) = \eta(P_n)$.

KORKARYKERKER POLO

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite

Let $\eta(G)$ denote the number of even sequences of G.

Claim

A permutation π is an even sequence for P_n if and only if π^{-1} is an alternating permutation. In particular, $\nu(P_n) = \eta(P_n)$.

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

Question

Does every graph satisfy $\nu(G) = \eta(G)$?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Question

Does every graph satisfy $\nu(G) = \eta(G)$?

Claim

No!

K ロ → K 御 → K 君 → K 君 → 「君 → り Q Q →

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that $\nu(G') = \eta(G')$ for all induced subgraphs $G' \subseteq G$, then G is either bipartite, complete multipartite, or a blowup of a cycle.

KORKARYKERKER POLO

Question

What is the maximum/minimum values for $\nu(G)$ (or $\eta(G)$) amongst graphs G with some property?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Question

What is the maximum/minimum values for $\nu(G)$ (or $\eta(G)$) amongst graphs G with some property?

Theorem (Celano, Sieger, S. 2023)

If T is a tree on $2n + 1$ vertices, then

$$
n!2^n \leq \nu(T) = \eta(T) \leq (2n)!
$$

Moreover, equality holds in the lower bound if and only if T is a hairbrush, and equality holds in the upper bound if and only if T is a star.

. 4 E X 4 E X 4 E X 4 E X

 000

Observe that $\nu(G) = 0$ if and only if -1 is a root of $A_D(t)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Observe that $\nu(G) = 0$ if and only if -1 is a root of $A_D(t)$.

Question

What can be said about the multiplicity of -1 as a root of $A_D(t)$ in general?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Observe that $\nu(G) = 0$ if and only if -1 is a root of $A_D(t)$.

Question

What can be said about the multiplicity of -1 as a root of $A_D(t)$ in general?

 $A_{D_1}(t)=(1+t)^3(1+t+11t^2+t^3+t^4) \quad A_{D_2}(t)=(1+t)(1+5t+16t^2+16t^3+16t^4+5t^5+t^6)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Theorem (Celano, Sieger, S. 2023)

If D is a tournament on n vertices, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$.

Theorem (Celano, Sieger, S. 2023)

If D is a tournament on n vertices, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$.

Question

Is $\frac{n}{2}$ $\frac{n}{2}$] the largest $\operatorname{mult}(A_D(t),-1)$ can be?

Note that tournaments have the largest (potential) degree for $A_D(t)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Question

Is $\frac{n}{2}$ $\frac{n}{2}$] the largest $\operatorname{mult}(A_D(t),-1)$ can be?

Question

Is
$$
\lfloor \frac{n}{2} \rfloor
$$
 the largest $\text{mult}(A_D(t), -1)$ can be?

Theorem (Celano, Sieger, S. 2023)

If D is an n-vertex digraph, then

$$
\operatorname{mult}(A_D(t),-1)\leq n-s_2(n),
$$

where $s_2(n)$ denotes the number of 1's in the binary expansion of n. Moreover, for all n, there exist n-vertex digraphs D with

$$
A_D(t)=\frac{n!}{2^{n-s_2(n)}}(1+t)^{n-s_2(n)}.
$$

The only extremal examples we know are "impartial digraphs", which is weird.

KORKARYKERKER POLO

Recall that we want to show $\nu(G) = \eta(G)$ for e.g. bipartite graphs.

KO K K (D K A B K K B K A G K K K K K K K K

Recall that we want to show $\nu(G) = \eta(G)$ for e.g. bipartite graphs.

Claim

If G has an odd number of edges, then $\nu(G) = \eta(G) = 0$.

Recall that we want to show $\nu(G) = \eta(G)$ for e.g. bipartite graphs.

Claim

If G has an odd number of edges, then $\nu(G) = \eta(G) = 0$.

Claim

If G has an even number of edges, then

$$
\eta(G)=\sum_{v}\eta(G-v).
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Corollary

If every bipartite graph with an even number of edges satisfies $\nu(G) = \sum \nu(G - v)$, then $\nu(G) = \eta(G)$ for every bipartite graph.

KORKARYKERKER POLO

Corollary

If every bipartite graph with an even number of edges satisfies $\nu(G) = \sum \nu(G - v)$, then $\nu(G) = \eta(G)$ for every bipartite graph.

Lemma

For any digraph,

$$
A_D(t)=\sum_{v\in V}\frac{t^{\deg_D^+(v)}+t^{\deg_D^-(v)}}{2}A_{D-v}(t)
$$

KORKARYKERKER POLO

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

Lemma

For such a digraph we have $A_D(-1) \geq 0$.

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

Lemma

For such a digraph we have $A_D(-1) \geq 0$. In particular, when e(G) is even we have

$$
\nu(G) = A_D(-1) = \sum_{v \in V(D)} A_{D-v}(-1) = \sum \nu(G - v).
$$

Claim

There exists "natural" orientations for complete multipartite graphs/blowup of a cycles which makes it easy to predict the sign of $A_D(t)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Claim

There exists "natural" orientations for complete multipartite graphs/blowup of a cycles which makes it easy to predict the sign of $A_D(t)$.

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that $\nu(G') = \eta(G')$ for all induced subgraphs $G' \subseteq G$, then G is either bipartite, complete multipartite, or a blowup of a cycle.

KORKARYKERKER POLO

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that $\nu(G') = \eta(G')$ for all induced subgraphs $G' \subseteq G$, then G is either bipartite, complete multipartite, or a blowup of a cycle.

Proposition (Celano, Sieger, S. 2023)

If G is a connected graph, then G is induced odd pan-free if and only if it is either bipartite, complete multipartite, or a blowup of a cycle.

(ロ) (個) (差) (差) …

 2990

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Question

Can one give a combinatorial interpretation for $\nu(G)$ for arbitrary graphs G?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Question

Can one give a combinatorial interpretation for $\nu(G)$ for arbitrary graphs G?

Note that $\nu(G) \leq \eta(G)$ in general, so perhaps this is some special subset of even sequences.

KORKARYKERKER POLO

Question

Can one give a combinatorial interpretation for $\nu(G)$ for arbitrary graphs G?

Note that $\nu(G) \leq \eta(G)$ in general, so perhaps this is some special subset of even sequences.

KORKARYKERKER POLO

Conjecture

If G is an Eulerian graph, then $\nu(G) = \sum_{v} \nu(G - v)$.

We gave a non-combinatorial proof that $\nu(G) = \eta(G)$ for all bipartite graphs G.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

We gave a non-combinatorial proof that $\nu(G) = \eta(G)$ for all bipartite graphs G.

Problem

For any bipartite graph $G = ([n], E)$ and orientation D of G, construct an explicit involution $\phi : \mathfrak{S}_n \to \mathfrak{S}_n$ such that

KORKARYKERKER POLO

- (a) The set of fixed points \mathcal{F}_{ϕ} of ϕ is the set of (inverses of) even sequences of G, and
- (b) $(-1)^{\text{des}_D(\sigma)} = -(-1)^{\text{des}_D(\phi(\sigma))}$ for all $\sigma \notin \mathcal{F}_{\phi}$.

Conjecture

If D is the orientation of a complete multipartite graph which has r parts of odd size, then $\operatorname{mult}(A_D(t), -1) = \left\lfloor \frac{R}{2} \right\rfloor$ $\frac{r}{2}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Conjecture

If D is the orientation of a complete multipartite graph which has r parts of odd size, then $\operatorname{mult}(A_D(t), -1) = \left\lfloor \frac{R}{2} \right\rfloor$ $\frac{r}{2}$.

KORKARYKERKER POLO

It is easy to show that $mult(A_D(t), 0)$ corresponds to the minimum number of arcs one must reverse in order for D to be acyclic.

Conjecture

If D is the orientation of a complete multipartite graph which has r parts of odd size, then $\operatorname{mult}(A_D(t), -1) = \left\lfloor \frac{R}{2} \right\rfloor$ $\frac{r}{2}$.

It is easy to show that $mult(A_D(t), 0)$ corresponds to the minimum number of arcs one must reverse in order for D to be acyclic.

Question

Does there exist a digraph D such that $A_D(t)$ has an integral root which is not equal to either 0 or -1 ?

No such digraph exists on at most 5 vertices, and there exist digraphs with real roots of magnitude larger than 2.

KELK KØLK VELKEN EL 1990