Eulerian Polynomials of Digraphs

Sam Spiro, Rutgers University

Joint with Kyle Celano and Nicholas Sieger

イロト 不得 トイヨト イヨト

э

Permutation Statistics

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ■ ● 9 Q @

Permutation Statistics

A descent of a permutation σ on the set $[n] := \{1, 2, ..., n\}$ is an index $i \in [n-1]$ such that $\sigma(i) > \sigma(i+1)$. An inversion is a pair of integers (i, j) with $1 \le i < j \le n$ such that $\sigma(i) > \sigma(j)$.

 $\sigma = 23154$

 $Des(\sigma) = \{2,4\}, Inv(\sigma) = \{(1,3), (2,3), (4,5)\}$

Permutation Statistics

A descent of a permutation σ on the set $[n] := \{1, 2, ..., n\}$ is an index $i \in [n-1]$ such that $\sigma(i) > \sigma(i+1)$. An inversion is a pair of integers (i, j) with $1 \le i < j \le n$ such that $\sigma(i) > \sigma(j)$.

 $\sigma = 23154$ Des $(\sigma) = \{2, 4\}, \text{ Inv}(\sigma) = \{(1, 3), (2, 3), (4, 5)\}$

The generating functions

$$A_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{des}(\sigma)} \quad M_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{inv}(\sigma)}$$

are called Eulerian polynomials and Mahonian polynomials, respectively.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

A permutation of an *n*-vertex digraph D = (V, E) is a bijection $\sigma : V \to [n]$. A descent of such a permutation is an arc $u \to v$ such that $\sigma(u) > \sigma(v)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Claim (Foata-Zeilberger)

If $D = \overrightarrow{P}_n$, then D-descents are exactly descents. Similarly $D = \overrightarrow{K}_n$ corresponds to inversions.

Claim (Foata-Zeilberger)

If $D = \overrightarrow{P}_n$, then D-descents are exactly descents. Similarly $D = \overrightarrow{K}_n$ corresponds to inversions.

For a digraph D = (V, E), we define

$$A_D(t) = \sum_{\sigma \in \mathfrak{S}_D} t^{\mathrm{des}_D(\sigma)}.$$
 (1)

In particular, $A_{\overrightarrow{P_n}}(t) = A_n(t)$ and $A_{\overrightarrow{K_n}}(t) = M_n(t)$.

Question

What (if anything) can be said about $A_D(-1)$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question

What (if anything) can be said about $A_D(-1)$?

 $|A_n(-1)| = |A_{\overrightarrow{P}_n}(-1)|$ is the number of alternating permutations, i.e. those that go

 $\sigma(1) < \sigma(2) > \sigma(3) < \cdots > \sigma(n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

What (if anything) can be said about $A_D(-1)$?

 $|A_n(-1)| = |A_{\overrightarrow{P}_n}(-1)|$ is the number of alternating permutations, i.e. those that go

$$\sigma(1) < \sigma(2) > \sigma(3) < \cdots > \sigma(n)$$

 $|M_n(-1)| = |A_{\overrightarrow{K}_n}(-1)|$ also counts something interesting.

Question

What (if anything) can be said about $A_D(-1)$?

 $|A_n(-1)|=|A_{\overrightarrow{P}_n}(-1)|$ is the number of alternating permutations, i.e. those that go

$$\sigma(1) < \sigma(2) > \sigma(3) < \cdots > \sigma(n)$$

 $|M_n(-1)| = |A_{\overrightarrow{K}_n}(-1)|$ also counts something interesting.

and the later being the number of correct proofs of the Riemann hypothesis¹.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

¹As of the time of writing.

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

With this in mind, for any graph G we can define

$$\nu(G) = |A_D(-1)|$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for any orientation D of G.

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

With this in mind, for any graph G we can define

$$\nu(G) = |A_D(-1)|$$

for any orientation D of G.

Question (Kalai 2002)

What can be said about $\nu(G)$?

Claim

The value of $|A_D(-1)|$ depends only on the underlying graph of G.

With this in mind, for any graph G we can define

$$\nu(G) = |A_D(-1)|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for any orientation D of G.

Question (Kalai 2002)

What can be said about $\nu(G)$?

For example, $\nu(P_n) = |A_{\overrightarrow{P}_n}(-1)|$ is the number of alternating permutations.

Definition

Given an *n*-vertex graph *G*, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) is an *even sequence* if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

Definition

Given an *n*-vertex graph *G*, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) is an *even sequence* if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) is an *even sequence* if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

$$1 \circ 3 \circ 6$$

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) is an *even sequence* if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

Definition

Given an *n*-vertex graph *G*, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) is an *even sequence* if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

Definition

Given an *n*-vertex graph G, we say that an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) is an *even sequence* if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an even number of edges for all $1 \le i \le n$.

We claim that $\pi = (3, 1, 2, 5, 4)$ is an even sequence:

Let $\eta(G)$ denote the number of even sequences of G.

Let $\eta(G)$ denote the number of even sequences of G.

Claim

A permutation π is an even sequence for P_n if and only if π^{-1} is an alternating permutation. In particular, $\nu(P_n) = \eta(P_n)$.

Let $\eta(G)$ denote the number of even sequences of G.

Claim

A permutation π is an even sequence for P_n if and only if π^{-1} is an alternating permutation. In particular, $\nu(P_n) = \eta(P_n)$.

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite

Let $\eta(G)$ denote the number of even sequences of G.

Claim

A permutation π is an even sequence for P_n if and only if π^{-1} is an alternating permutation. In particular, $\nu(P_n) = \eta(P_n)$.

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

Question

Does every graph satisfy $\nu(G) = \eta(G)$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question

Does every graph satisfy $\nu(G) = \eta(G)$?

Claim

No!

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that $\nu(G') = \eta(G')$ for all induced subgraphs $G' \subseteq G$, then G is either bipartite, complete multipartite, or a blowup of a cycle.

Question

What is the maximum/minimum values for $\nu(G)$ (or $\eta(G)$) amongst graphs G with some property?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question

What is the maximum/minimum values for $\nu(G)$ (or $\eta(G)$) amongst graphs G with some property?

Theorem (Celano, Sieger, S. 2023)

If T is a tree on 2n + 1 vertices, then

$$n!2^n \le \nu(T) = \eta(T) \le (2n)!$$

Moreover, equality holds in the lower bound if and only if T is a hairbrush, and equality holds in the upper bound if and only if T is a star.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Observe that $\nu(G) = 0$ if and only if -1 is a root of $A_D(t)$.

・ロト・日本・ヨト・ヨー うへの

Observe that $\nu(G) = 0$ if and only if -1 is a root of $A_D(t)$.

Question

What can be said about the multiplicity of -1 as a root of $A_D(t)$ in general?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observe that $\nu(G) = 0$ if and only if -1 is a root of $A_D(t)$.

Question

What can be said about the multiplicity of -1 as a root of $A_D(t)$ in general?

 $A_{D_1}(t) = (1+t)^3(1+t+11t^2+t^3+t^4) \quad A_{D_2}(t) = (1+t)(1+5t+16t^2+16t^3+16t^4+5t^5+t^6)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Celano, Sieger, S. 2023)

If D is a tournament on n vertices, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{n}{2} \rfloor$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Celano, Sieger, S. 2023)

If D is a tournament on n vertices, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{n}{2} \rfloor$.

Question

Is $\lfloor \frac{n}{2} \rfloor$ the largest $\operatorname{mult}(A_D(t), -1)$ can be?

Note that tournaments have the largest (potential) degree for $A_D(t)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question

Is $\lfloor \frac{n}{2} \rfloor$ the largest mult $(A_D(t), -1)$ can be?

Question

Is
$$\lfloor \frac{n}{2} \rfloor$$
 the largest $\operatorname{mult}(A_D(t), -1)$ can be?

Theorem (Celano, Sieger, S. 2023)

If D is an n-vertex digraph, then

$$\operatorname{mult}(A_D(t),-1) \leq n - s_2(n),$$

where $s_2(n)$ denotes the number of 1's in the binary expansion of n. Moreover, for all n, there exist n-vertex digraphs D with

$$A_D(t) = \frac{n!}{2^{n-s_2(n)}}(1+t)^{n-s_2(n)}.$$

The only extremal examples we know are "impartial digraphs", which is weird.

Recall that we want to show $\nu(G) = \eta(G)$ for e.g. bipartite graphs.

(ロ)、(型)、(E)、(E)、 E) の(()

Recall that we want to show $\nu(G) = \eta(G)$ for e.g. bipartite graphs.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Claim

If G has an odd number of edges, then $\nu(G) = \eta(G) = 0$.

Recall that we want to show $\nu(G) = \eta(G)$ for e.g. bipartite graphs.

Claim

If G has an odd number of edges, then $\nu(G) = \eta(G) = 0$.

Claim

If G has an even number of edges, then

$$\eta(G) = \sum_{v} \eta(G - v).$$

Corollary

If every bipartite graph with an even number of edges satisfies $\nu(G) = \sum \nu(G - v)$, then $\nu(G) = \eta(G)$ for every bipartite graph.

Corollary

If every bipartite graph with an even number of edges satisfies $\nu(G) = \sum \nu(G - v)$, then $\nu(G) = \eta(G)$ for every bipartite graph.

Lemma

For any digraph,

$$egin{aligned} \mathcal{A}_D(t) &= \sum_{v \in V} rac{t^{\mathsf{deg}_D^+(v)} + t^{\mathsf{deg}_D^-(v)}}{2} \mathcal{A}_{D-v}(t) \end{aligned}$$

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

Lemma

For such a digraph we have $A_D(-1) \ge 0$.

Claim

There exists a "natural" orientation D for each bipartite graph G which makes it easy to predict the sign of $A_D(t)$.

Lemma

For such a digraph we have $A_D(-1) \ge 0$. In particular, when e(G) is even we have

$$\nu(G) = A_D(-1) = \sum_{v \in V(D)} A_{D-v}(-1) = \sum \nu(G-v).$$

Claim

There exists "natural" orientations for complete multipartite graphs/blowup of a cycles which makes it easy to predict the sign of $A_D(t)$.

Claim

There exists "natural" orientations for complete multipartite graphs/blowup of a cycles which makes it easy to predict the sign of $A_D(t)$.

Theorem (Celano, Sieger, S. 2023)

We have $\nu(G) = \eta(G)$ whenever G is bipartite, complete multipartite, or a blowup of a cycle.

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that $\nu(G') = \eta(G')$ for all induced subgraphs $G' \subseteq G$, then G is either bipartite, complete multipartite, or a blowup of a cycle.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem (Celano, Sieger, S. 2023)

If G is a connected graph such that $\nu(G') = \eta(G')$ for all induced subgraphs $G' \subseteq G$, then G is either bipartite, complete multipartite, or a blowup of a cycle.

Proposition (Celano, Sieger, S. 2023)

If G is a connected graph, then G is induced odd pan-free if and only if it is either bipartite, complete multipartite, or a blowup of a cycle.

ヘロマ 人間マ ヘヨマ ヘロマ

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

Question

Can one give a combinatorial interpretation for $\nu(G)$ for arbitrary graphs G?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question

Can one give a combinatorial interpretation for $\nu(G)$ for arbitrary graphs G?

Note that $\nu(G) \leq \eta(G)$ in general, so perhaps this is some special subset of even sequences.

Question

Can one give a combinatorial interpretation for $\nu(G)$ for arbitrary graphs *G*?

Note that $\nu(G) \leq \eta(G)$ in general, so perhaps this is some special subset of even sequences.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture

If G is an Eulerian graph, then $\nu(G) = \sum_{v} \nu(G - v)$.

We gave a non-combinatorial proof that $\nu(G) = \eta(G)$ for all bipartite graphs G.

We gave a non-combinatorial proof that $\nu(G) = \eta(G)$ for all bipartite graphs G.

Problem

For any bipartite graph G = ([n], E) and orientation D of G, construct an explicit involution $\phi : \mathfrak{S}_n \to \mathfrak{S}_n$ such that

- (a) The set of fixed points \mathcal{F}_ϕ of ϕ is the set of (inverses of) even sequences of G, and
- (b) $(-1)^{\operatorname{des}_D(\sigma)} = -(-1)^{\operatorname{des}_D(\phi(\sigma))}$ for all $\sigma \notin \mathcal{F}_{\phi}$.

Conjecture

If D is the orientation of a complete multipartite graph which has r parts of odd size, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{r}{2} \rfloor$.

Conjecture

If D is the orientation of a complete multipartite graph which has r parts of odd size, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{r}{2} \rfloor$.

It is easy to show that $\operatorname{mult}(A_D(t), 0)$ corresponds to the minimum number of arcs one must reverse in order for D to be acyclic.

Conjecture

If D is the orientation of a complete multipartite graph which has r parts of odd size, then $\operatorname{mult}(A_D(t), -1) = \lfloor \frac{r}{2} \rfloor$.

It is easy to show that $\operatorname{mult}(A_D(t), 0)$ corresponds to the minimum number of arcs one must reverse in order for D to be acyclic.

Question

Does there exist a digraph D such that $A_D(t)$ has an integral root which is not equal to either 0 or -1?

No such digraph exists on at most 5 vertices, and there exist digraphs with real roots of magnitude larger than 2.